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Abstract 72 

 73 

Purpose 74 

To validate the generalizability of a deep learning system (DLS) that detects diabetic 75 

macular edema (DME) from two-dimensional color fundus photography (CFP), where the 76 

reference standard for retinal thickness and fluid presence is derived from three-dimensional 77 

optical coherence tomography (OCT). 78 

 79 

Design 80 

Retrospective validation of a DLS across international datasets. 81 

 82 

Participants 83 

Paired CFP and OCT of patients from diabetic retinopathy (DR) screening programs or 84 

retina clinics. The DLS was developed using datasets from Thailand, the United Kingdom 85 

(UK) and the United States and validated using 3,060 unique eyes from 1,582 patients 86 

across screening populations in Australia, India and Thailand. The DLS was separately 87 

validated in 698 eyes from 537 screened patients in the UK with mild DR and suspicion of 88 

DME based on CFP. 89 

 90 

Methods  91 

The DLS was trained using DME labels from OCT. Presence of DME was based on retinal 92 

thickening or intraretinal fluid. The DLS’s performance was compared to expert grades of 93 

maculopathy and to a previous proof-of-concept version of the DLS. We further simulated 94 

integration of the current DLS into an algorithm trained to detect DR from CFPs. 95 

 96 

Main Outcome Measures 97 
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Superiority of specificity and non-inferiority of sensitivity of the DLS for the detection of 98 

center-involving DME, using device specific thresholds, compared to experts. 99 

 100 

Results 101 

Primary analysis in a combined dataset spanning Australia, India, and Thailand showed the 102 

DLS had 80% specificity and 81% sensitivity compared to expert graders who had 59% 103 

specificity and 70% sensitivity. Relative to human experts, the DLS had significantly higher 104 

specificity (p=0.008) and non-inferior sensitivity (p<0.001). In the UK dataset the DLS had a 105 

specificity of 80% (p<0.001 for specificity > 50%) and a sensitivity of 100% (p=0.02 for 106 

sensitivity > 90%). 107 

 108 

Conclusions 109 

The DLS can generalize to multiple international populations with an accuracy exceeding 110 

experts. The clinical value of this DLS to reduce false positive referrals, thus decreasing the 111 

burden on specialist eye care, warrants prospective evaluation.  112 
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Introduction 113 

Diabetic macular edema (DME) is characterized by retinal thickening and an accumulation of 114 

intraretinal fluid (IRF) caused by abnormal vascular permeability and leakage in diabetic 115 

retinopathy and diabetes mellitus, and is a leading cause of blindness among working-aged 116 

adults.1,2 Prompt detection and treatment of DME is imperative to stabilize vision.3 117 

 118 

Diabetic eye screening programs utilize colour fundus photography (CFP) for detection of 119 

diabetic retinopathy (DR) and DME. For DME, the presence of hard exudates (HE) near the 120 

fovea is used as a surrogate marker for the presence of fluid. However, this marker alone is 121 

an imperfect indicator of DME and has limited specificity and sensitivity.4,5,6 122 

 123 

Clinical testing via three-dimensional optical coherence tomography (OCT) is increasingly 124 

recognized as the reference standard for detection of DME.7 Clinical trials investigating DME 125 

therapies have relied on OCT-derived central retinal thickness as an inclusion criteria and 126 

clinical endpoint.8,9 Another important marker of DME activity on OCT is the presence of 127 

intraretinal fluid (IRF), which may gauge response to treatment.10 Despite the advantage of 128 

OCT for reliable diagnosis and classification of DME, this modality remains unavailable in 129 

many parts of the world due to its high cost and need for expert interpretation,11 resulting in 130 

ongoing reliance on CFP for DME screening. 131 

 132 

Deep learning, a type of artificial intelligence, has been used for computational detection of 133 

DR and DME from CFP.12–15 These deep learning systems (DLSs) are typically trained using 134 

CFP with HE-labels and are unlikely to address the sensitivity and specificity gaps. To 135 

improve upon expert performance, our group previously reported a DLS that predicted OCT-136 

derived DME labels using only CFP as input (the “DME-DLS”).16 Other groups have similarly 137 

evaluated feasibility of systems that predict OCT-derived central retinal thickness using a 138 

CFP input and obtained promising results.17 139 
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 140 

This is the first study of its kind to generalize a DLS aimed at predicting OCT-derived ground 141 

truth using CFP as input in multiple, independent screening populations. The performance of 142 

the DME-DLS was compared to both expert grading of CFP and the previously reported 143 

version of the DLS. Additionally, we analyzed the ability of the DLS in detecting center-144 

involving DME (ci-DME) with definitions based on retinal thickening and IRF presence. As a 145 

secondary outcome, the DLS performance for detecting the presence of OCT-based DME 146 

irrespective of location was evaluated. To better understand the potential impact of improved 147 

DME screening in the context of broader DR screening, we further evaluated the net effect of 148 

replacing the DME component of a previously published and extensively validated Krause et. 149 

al DLS that detects both DR and DME using conventional grading guidelines.18,19,20150 
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Methods 151 

Study data were obtained from multiple sources. These data were collected with the 152 

participant's consent and/or de-identified in accordance with local regulatory requirements 153 

(e.g., HIPAA) and/or reviewed by the institution's Ethics Committee or IRB prior to our 154 

receipt of the dataset. The study adhered to the tenets of the Declaration of Helsinki. 155 

Datasets 156 

Development datasets 157 

Our DLS was developed using 1,167,791 retrospectively collected paired single-field CFP 158 

and OCT images from four sites in three countries: Thailand (1,299 images from Lerdsin 159 

Hospital and 7,072 from Rajavithi Hospital), the UK (1,156,142 images from Moorfields Eye 160 

Hospital), and the US (3,278 images from Alameda County Health System) (Table S1). All 161 

images were collected from diabetic patients except for the UK dataset, which consisted of a 162 

wide range of retinal pathology. Data were divided randomly, by patient, into train (98.8%) 163 

and tune (1.2%) sets, with the ratio based on an empirical estimation of necessary tuning 164 

versus training dataset sizes. The train set came from Thailand Lerdsin (100%), Thailand 165 

Rajavithi (68%), and the UK (99.3%), while the tune set was gathered from Thailand 166 

Rajavithi (32%), the UK (0.7%) and the US (100%). Some datasets were used exclusively 167 

for training or tuning to help assess inter-dataset generalization during tuning, thus their 168 

ability to generalize to new datasets. 169 

Validation datasets 170 

Validation of the DLS was performed on independent datasets, comprising patients with 171 

diabetes from institutions in Australia, India, Thailand and the UK. Datasets from Australia 172 

and India were external validation sets. The validation dataset from Thailand was from the 173 

same institution as the developmental set; however, it was from a different temporal period 174 
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and consisted solely of a screening population (compared to retina clinic patients). The UK 175 

dataset was an internal validation dataset from the same institution and an overlapping time 176 

period (though without patient duplication) (Table 1). 177 

Definitions, image acquisition, and grading 178 

Definition of OCT-based DME 179 

DLS performance was evaluated using two separate definitions of DME: one based on 180 

retinal thickening and the second on IRF presence; each definition was further divided into 181 

ci-DME and DME (combined ci-DME and non-center involving [nci-DME]). 182 

 183 

For retinal thickening, device- and gender-specific thresholds were used to define ci-DME in 184 

ETDRS zone 1/central subfield thickness (CST) in all datasets (Table S2).3,21–23 For IRF 185 

presence, ci-DME was defined as fluid present within ETDRS zone 1. Similarly, nci-DME 186 

was defined as retinal thickening or IRF occurring solely in zones 2–9.24 The retinal 187 

thickening based ci-DME definition was used for primary analysis; all other definitions were 188 

used for secondary analysis. Further details of defining DME, OCT retinal thickness 189 

acquisition and OCT grading of fluid presence can be found in the Supplementary Methods 190 

S1.  191 

CFP grading for comparison to DLS 192 

To provide a baseline comparison for the DLS, experienced graders labeled CFP in the 193 

validation set for DR severity and for the presence and location of HE within 1500 µm of the 194 

foveal center. DR level was based on the International Clinical Diabetic Retinopathy Disease 195 

Severity Scale25 and presence of HE, reflecting clinical practice in DR screening programs. 196 

Further details on grading CFPs and image quality guidelines are provided in the 197 

Supplementary Methods S1. 198 

 199 
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Table 2 describes the availability of ground truths and expert grades for comparison in the 200 

validation datasets. 201 

Deep learning system 202 

Development 203 

The DME-DLS was trained similarly to the proof-of-concept version,16 with some significant 204 

upgrades to aid generalization. The DME-DLS is a deep convolutional neural network 205 

trained with TensorFlow.27 The DLS takes CFP as input and simultaneously outputs 206 

predictions for thickness-based ci-DME, IRF-based ci-DME, and thickness-based DME 207 

(inclusive of both ci-DME and nci-DME). While OCT provided the ground truth labels, the 208 

actual OCT images were never seen by the DLS during training or validation (Figure 1A). To 209 

improve performance, the DLS was developed using multi-task learning with the following 210 

co-trained tasks: subretinal fluid presence, prediction of sex, and prediction of age. To aid 211 

generalization, this version of the DME-DLS was also trained on the large UK development 212 

dataset, with automated labels generated using a previously described segmentation DLS.28  213 

The current model was trained to predict the volume of fluid output by the segmentation DLS 214 

instead of fluid presence alone and it used the EfficientNet-B5 architecture29 to train on the 215 

much larger dataset in a reasonable amount of time. Further details on the DLS design are 216 

available in Supplementary Methods S2. 217 

Evaluation 218 

To enable comparison with expert grades, the output of the DLS was thresholded to produce 219 

a binary result: DME present or absent. As the Australia, India and Thailand datasets 220 

consisted of a screening population where the pre-test probability for presence of DME 221 

would be lower, high-specificity operating points were chosen, with separate operating points 222 

for ci-DME (thickness and IRF presence) and DME (thickness) outputs. Operating points 223 

were selected to maximize specificity on the Thailand and US tune sets, subject to the 224 
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constraint that the 95% confidence lower bound of DME-DLS sensitivity was at most 10% 225 

lower than the expert graders.  The same operating points were used for the aggregated 226 

analysis of all three datasets as well as for each individual country’s dataset. Since the UK 227 

dataset contained data from a pre-screened population with evidence of mild DR and a 228 

suspicion of DME, the pre-test probability for presence of DME would be higher, and so a 229 

separate high-sensitivity operating point was chosen with 95% confidence lower bound 230 

sensitivity of 90%. All operating points were pre-selected before evaluating the model on the 231 

validation datasets (Figure 1B). 232 

 233 

We further simulated integration of this DME-DLS into another previously validated DLS,18 234 

with the originally described DLS being referred to as the Krause et al. DLS henceforth. The 235 

Krause et al. DLS detects DR and DME and was developed on an independent dataset of 236 

CFP using the presence of HE as labels for DME. Our DME-DLS was used to replace the 237 

DME detector in the Krause et al. DLS without modifying the DR component (Figure S1). 238 

Using the adjudicated Indian dataset, we then compared the original and modified version of 239 

the Krause et al. DLS for detecting patients with vision-threatening DR (VTDR), defined as 240 

severe non-proliferative DR, proliferative DR, or ci-DME (retinal thickening) in at least one 241 

eye. 242 

Statistical analysis 243 

For pre-specified primary analyses, the performance of the DLS was compared with experts, 244 

specifically testing superiority of specificity and non-inferiority of sensitivity (at a 10% margin) 245 

for detection of ci-DME (thickening) on the aggregation of Australia, India, and Thailand 246 

validation sets. Superiority comparisons for specificity were two-sided McNemar tests,30 247 

while non-inferiority comparisons for sensitivity with a pre-specified margin of 10% were 248 

Wald tests.31 Since there were multiple graders, we adjusted for the clustered nature of the 249 

data using Obuchowski’s method for paired binomial proportions.32,33 Confidence intervals 250 

for sensitivities and specificities were calculated using the exact Clopper-Pearson interval. 251 
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We further conducted receiver operating characteristic (ROC) analysis to evaluate the DLS 252 

both in isolation and in comparison to the previously reported version of the DLS. Non-253 

parametric confidence intervals on the area under the curve (AUC)-ROC were computed 254 

with DeLong’s method.34 255 

 256 

Secondary analysis evaluated DLS performance when compared to experts on a per-dataset 257 

level (Australia, India and Thailand). We also analyzed DLS performance for detection of 258 

DME defined by fluid presence, DME irrespective of location, and when restricted to mild-to-259 

moderate DR, where ground truth was available. On the UK dataset, we tested for sensitivity 260 

of > 90% and specificity of > 50% using an exact one-sided binomial test.261 
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Results 262 

The DME-DLS was validated on independent, screening datasets from Australia, India and 263 

Thailand. Additionally, the DME-DLS was validated in a cohort of patients from the UK 264 

screening program referred specifically for maculopathy based on CFP. The characteristics 265 

of the cohorts are provided in Table 2. The rate of ci-DME was higher in the India dataset 266 

(21%) compared to the other 3 datasets (3–5%). After excluding ungradable images, the 267 

DLS was validated on 3574 images.  268 

DME based on retinal thickening 269 

Our primary analysis evaluated the DME-DLS against a reference standard of ci-DME based 270 

on retinal thickening in a combined cohort of the Australia, India, and Thailand datasets and 271 

compared it to experts grading maculopathy on CFP. The DME-DLS had a specificity of 80% 272 

and a sensitivity of 81% compared to expert specificity of 59% and sensitivity of 70%. The 273 

DME-DLS had superior specificity (p=0.008) and non-inferior sensitivity (p<0.001), reducing 274 

false positives by 51%. Exploratory analysis revealed the DME-DLS also had superior 275 

sensitivity (p=0.014) (Table 3).  276 

 277 

Per-dataset, the DME-DLS’s specificities (vs human experts) for the Australia, India, and 278 

Thailand datasets were 86% (vs 57%; p=0.03), 77% (vs 44%; p<0.001) and 66% (vs 78%; 279 

p=0.20), respectively; the corresponding sensitivities were 71% (vs 66%, p=0.007 for non-280 

inferiority), 84% (vs 72%, p=0.002) and 100% (vs 77%, p=0.013) (Table 3). 281 

 282 

We also compared our DME-DLS’s ci-DME detection performance with a previously 283 

reported, non-generalized, proof-of-concept version of this DLS (Figure 2A).16 The current 284 

DME-DLS had an AUC of 0.88 compared to 0.80 for the proof-of-concept DLS. For the 285 

Australia, India, and Thailand datasets individually, the AUCs for the DME-DLS (vs the 286 
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proof-of-concept version) were 0.86 (vs 0.73), 0.89 (0.74), 0.96 (0.93), respectively. The 287 

performance was consistent when restricted to eyes with mild-to-moderate DR (Figure S2) 288 

and when subgrouped by gender (Figure S3). 289 

 290 

For the UK dataset, the DME-DLS had an AUC of 0.96 (vs 0.82 for the proof-of-concept 291 

DLS), a specificity of 88% and a sensitivity of 89%. At the prespecified high-sensitivity 292 

threshold, the DME-DLS had a specificity of 80% (p<0.001 for specificity >50%) and a 293 

sensitivity of 100% (p=0.02 for sensitivity >90%) (Figure 2B). The DME-DLS reduced false 294 

positives by 80% from 661 to 129, while detecting all 37 eyes with ci-DME on OCT. 295 

 296 

Besides ci-DME, we evaluated the DME-DLS against a reference standard of DME (based 297 

on retinal thickening) anywhere in the macula (Figure S4). The DME-DLS specificities (vs 298 

human experts) for the Australia, India and Thailand datasets were 93% (vs 69%), 87% (vs 299 

55%) and 70% (vs 86%) respectively; the corresponding sensitivities were 56% (vs 60%), 300 

76% (vs 72%) and 90% (vs 65%), respectively. 301 
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DME based on intraretinal fluid presence 302 

When assessing DLS performance against the expert graded reference standard in 303 

detecting DME defined by IRF, similar trends in performance were noted (Figure 2C-D). In 304 

the Australia and India validation datasets, at the pre-specified threshold, the DLS 305 

specificities (vs human experts) were 92% (vs 68%) and 67% (vs 44%), respectively; the 306 

corresponding sensitivities were 64% (vs 63%) and 89% (vs 71%), respectively. Additionally, 307 

the DLS had an AUC of 0.86 and 0.88 compared to 0.74 and 0.77, respectively, for the 308 

previously reported proof-of-concept DLS (Figure 2C). There was no significant impact on 309 

performance of the DLS when the reference standard was expanded to IRF presence 310 

anywhere in the macula (Figure S3D). 311 

 312 

For the UK dataset, the DLS had a sensitivity of 56% and a specificity of 95%. At the 313 

prespecified high-sensitivity threshold the DLS had a sensitivity of 94% (p=0.032 for 314 

sensitivity > 90%) and a specificity of 52% (p<0.001 for specificity > 45%) (Figure 2D). The 315 

DLS reduced false positives from 520 to 247, while missing only 9 of 162 eyes with ci-DME 316 

on OCT. None of the 9 eyes had ci-DME based on retinal thickening. The DLS had an AUC 317 

of 0.88 compared to 0.72 for the proof-of-concept DLS. 318 

 319 

Confusion matrices of DLS and expert grades for ci-DME defined by retinal thickening and 320 

IRF presence, where available, in all four validation sets is presented in Figure S7.321 
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Evaluation in the context of DLS-based DR screening 322 

Both original and modified versions of the Krause et al. DLS had similar sensitivities for 323 

detecting VTDR (p<0.001 for non-inferiority): 93% vs 92%, respectively. The specificity of 324 

the modified DLS was significantly higher than the specificity of the original (69% vs 60%, 325 

p=0.03). Thus, the modified Krause et al. DLS had 22% lower false positives for VTDR and 326 

8% fewer VTDR referrals, all without loss in sensitivity (Figure 3). 327 

Qualitative analysis 328 

Finally, we qualitatively analyzed randomly selected instances where the DLS did better or 329 

worse compared to retina specialists. Figure 4A shows an eye where HE are present near 330 

the fovea whereas the corresponding OCT shows an absence of ci-DME (thickening or 331 

fluid). This is a canonical example of false positive reduction achieved by the DLS. Figure 4B 332 

illustrates an example where the DLS detects a clear case of ci-DME without any HE on the 333 

corresponding CFP. Additional examples of false positive and false negative cases can be 334 

found in Figures S5 and S6, respectively. Figure 4C-D demonstrate examples of DLS false 335 

negative and false positive, respectively. In both cases the visibility in the macular region 336 

appears to be compromised, which could be a potential cause for the DLS errors.337 Jo
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Discussion 338 

 339 

We present a DME-DLS that interprets CFP to provide a DME status that is significantly 340 

more specific than experts grading CFP for HEs, while retaining non-inferior sensitivity. We 341 

also achieved significantly higher performance when compared to a previously reported 342 

proof-of-concept version of the DME-DLS. Our results generalized across sites in four 343 

countries with diverse populations, to different DME definitions, location of DME, and to 344 

subgroups of patients with varying severities of DR, including the mild-to-moderate DR 345 

patient population for whom the screening tool will be most applicable. Use of a DLS similar 346 

to the one we present here holds particular clinical relevance, as diagnosis within screening 347 

centers rely heavily upon CFP, which can be less specific and lead to unnecessary referrals. 348 

 349 

In the UK, OCT surveillance clinics have recently been established as an intermediary stage 350 

to refine referrals between screening and specialist centers for patients with mild DR and 351 

suspected DME,35 as false positive rates can be as high as 86%.6 This is an important cohort 352 

to consider as specialty review is generally not required and rescreening at 12–24 months is 353 

recommended in the absence of DME.36 While OCT surveillance clinics can be more cost 354 

effective relative to direct referral from screening to a specialist center,35 it may not always 355 

be logistically feasible, and continues to place significant burden on patients to attend 356 

appointments and on expert clinicians to interpret the OCT. Therefore, using the UK 357 

validation set, we simulated implementation of the DLS as an ancillary second reader after 358 

initial screening has occurred in a cohort of patients that might be referred to the OCT 359 

surveillance clinic to identify false positives for DME presence. Our results suggest that the 360 

DLS could reduce unwarranted referrals by 80%, while not missing a single positive case. 361 

 362 

In resource-constrained healthcare systems such as in Thailand, the Krause et al. DR 363 

grading system has been effective at providing real-time results to patients.37 However, 364 
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human-centered evaluation observed concerns from both nurses and patients of a false 365 

positive result leading to the additional travel burden for referral follow-up, the cost of 366 

missing work, and the emotional strain due to a positive result.37 In addition, false positives 367 

place significant burden on already overwhelmed secondary care systems. Similarly, the 368 

Australian dataset was from an Aboriginal community clinic, where the DR screening occurs 369 

with CFP in many geographically isolated communities without specialist services. By 370 

reducing false positives for DME, high costs as well as logistical and cultural barriers are 371 

avoided when attempting to coordinate follow-up care. For the India validation set, we 372 

simulated the application of integrating this highly-specific DME detection DLS for automated 373 

DR screening. In this analysis, we were able to reduce false positive VTDR referrals by 22% 374 

and overall VTDR referrals by 8% with no statistically significant loss in sensitivity. 375 

 376 

We demonstrate that the DLS can detect DME within 3000 μm of the foveal center and ci-377 

DME affecting the central 500 μm. Anti-vascular endothelial growth factor drugs and steroid 378 

implants have demonstrated efficacy in improving visual acuity in patients with ci-DME38 and 379 

delaying treatment can lead to suboptimal visual gains.39 Nci-DME is also of significance as 380 

it may be a precursor to visually significant ci-DME and should be monitored for risk of 381 

progression.40 In these patients, focal laser treatment may be indicated to reduce leakage 382 

and stabilize visual acuity.41,42 Furthermore, our DLS can detect DME defined by thickening 383 

or IRF presence. Although these definitions are correlated, we found that only 20–66% of 384 

eyes with ci-DME, defined by either thickening or IRF, demonstrated both. Our DLS could be 385 

used to triage patients—prioritizing those who meet one or both definitions. 386 

 387 

The performance of the DLS was robust when assessing different degrees of DR severity. 388 

DME can be found in eyes at any DR severity level and can run an independent course to 389 

DR.43 In patients with mild or moderate DR, there is a risk of missing DME: Wang et al. 390 

found over 1 in 4 cases were missed when using CFP labels compared to an OCT reference 391 

standard.5 Exploratory analysis revealed our DLS to also have a higher sensitivity. Figure 4B 392 
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and Figure S6 illustrate instances with no hard exudates at the macula but with ci-DME on 393 

OCT that was correctly detected by the DLS. Such cases would have been missed if relying 394 

upon conventional CFP grading. This could be studied more rigorously with larger and 395 

prospectively planned datasets in the future. 396 

 397 

Prior work from our group has shown that the features around the fovea are most relevant 398 

for the proof-of-concept version of our DME-DLS.16 Explainability techniques such as heat 399 

maps have been applied, highlighting areas highly correlated with the DLS prediction.44 400 

Compared to the Krause et al. DLS, which focused on HE locations in the whole 45 degree 401 

CFP, the DME-DLS primarily focused on the fovea, leading to superior performance. 402 

Another explainability technique in prior work used CycleGAN,45 a type of Generative 403 

Adversarial Network that transforms negative cases into positive cases and vice versa, to 404 

visualize the changes in CFP features that are necessary for the transformation. This 405 

approach observed that transformations from DME to no-DME (or vice versa) involved the 406 

removal (or addition) of hard exudates and a darkening (or brightening) of the foveal 407 

region.44 Consistent with these findings, from qualitative analysis, we found that a proportion 408 

of incorrect predictions for the current DLS may be attributed to CFP artifacts such as poor 409 

contrast or macular shadows that might result from suboptimal pupil dilation (Figure 4C–D). 410 

In the future, improved interpretability of the DLS could provide an opportunity for clinicians 411 

to learn from and better diagnose DME directly from CFPs. 412 

 413 

In terms of aggregate performance (Australia, India, and Thailand datasets), the DLS met 414 

the primary endpoint of superior specificity and non-inferior sensitivity using a pre-specified 415 

operating point. However, we note that on a per-dataset level, the ROC curves suggest that 416 

the operating points could be further calibrated on a per-site basis to achieve a better trade-417 

off between sensitivity and specificity that accounts for local preferences and resource 418 

constraints. Applicable trade-offs are likely to be dependent on local resource constraints 419 

and the desired sensitivity. The shape of the ROC curve also varies between the sites, which 420 
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is likely due to differences in the population distribution. Future work could explore selecting 421 

the ideal operating point for a given setting. 422 

 423 

To be clinically applicable and robust, we developed and validated the DLS on images 424 

acquired from multiple manufacturers using gender and device-specific thresholds. However, 425 

due to site-specific differences in OCT devices and scan protocols, the reference standard 426 

for IRF in the secondary analyses differed across datasets in terms of the number of B-427 

scans and area imaged (fovea vs full volumes). Further studies may help understand how 428 

these changes in reference standard impact final performance. Furthermore, future work 429 

could explore the robustness of the DLS when compared to various thickness thresholds. 430 

For example, in the UK, NICE guidelines require point thickness of ≥400 µm in the central 431 

subfield to start treatment. A DLS that can identify different levels of ci-DME could more 432 

effectively prioritize patients that would be eligible for treatment. 433 

Conclusion 434 

This study demonstrates that the DME-DLS can generalize to multiple international 435 

populations with an accuracy exceeding both experts and a previous proof-of-concept 436 

version of the system. As the prevalence of diabetes is increasing, resulting in more 437 

individuals requiring DR screening,46 DLS systems are likely to play a significant role in 438 

assisting clinicians to ensure timely grading and referrals with both high sensitivity and 439 

specificity.47 We believe our DLS has most clinical applicability in resource-constrained 440 

settings to reduce false positive referrals from screening. Another advantage of our DLS is 441 

the ability to triage patients depending on the type of DME, such as ci-DME and nci-DME, as 442 

well as thickness and fluid-based definitions. Future work should explore the clinical utility of 443 

the DME-DLS through prospective evaluation.  444 
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Figure Legends 583 

Figure 1. Study design. A: The deep learning system (DLS) was trained to take color 584 

fundus photography (CFP) as input to predict optical coherence tomography (OCT)-derived 585 

diabetic macular edema (DME) presence, using datasets from Thailand, the UK and the US. 586 

B: The DLS was evaluated for non-inferiority of sensitivity and superiority of specificity, and 587 

compared to experts on datasets from Australia, India, and Thailand. The DLS was 588 

separately evaluated on a dataset from the UK. Given the difference in patient population 589 

(DR screening in Australia, India and Thailand, vs. pre-screened diabetes patients with a 590 

higher likelihood of DME in the UK), these datasets were separately analyzed.  Both the DLS 591 

and expert graders saw only the CFP. The reference standard was based on measurements 592 

from OCT.  593 

Figure 2. Receiver operating characteristic curves of the DME-DLS, a previously reported 594 

proof-of-concept version of the DLS (not generalized), and experts for detecting ci-DME. The 595 

threshold for the DLS was pre-specified. The experts graded the presence of hard exudates 596 

within 1500 μm. A) Comparison of performance of both DLSs and experts in a combined 597 

cohort of the screening datasets from Australia, India and Thailand consisting of eyes with 598 

mild or worse DR. ci-DME was defined by central subfield thickness exceeding OCT device 599 

specific threshold. B) Comparison of performance of both DLSs in the separate UK 600 

validation dataset consisting of patients referred from screening for DME. C) Comparison of 601 

performance of both DLSs and experts in the Australia and India datasets on eyes with mild 602 

or worse DR. ci-DME was defined by the presence of intraretinal fluid in the central subfield. 603 

D) Comparison of performance of both DLSs in the UK validation dataset. Intraretinal fluid 604 

presence grades were not available for the Thailand dataset. 605 

Figure 3: Effect of replacing the DME component of the Krause et al. DLS with the 606 

DME-DLS presented in this paper on the India dataset. The Krause et al. DLS (left) and 607 

the modified Krause et al. DLS (right) have identical rates of severe+DR compared with the 608 
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adjudicated ground truth (center). Yet, the dark red flow (left) shows the substantially larger 609 

number of DME categorizations made by the original Krause et al. DLS compared to the 610 

brighter red flow (right) for the modified Krause et al. DLS (i.e. reduced number of false 611 

positives by the modified DLS); the sensitivity remains unchanged (as shown by the green 612 

bar on the top). 613 

Figure 4. Selected paired CFPs and OCTs for DLS success and failure, as compared with 614 

retina specialists (RS) grading CFPs. A) Hard exudates (HE) within 1500 μm, no thickening or 615 

fluid on the OCT - detected correctly by the DLS. B) No HE within 1500 μm, thickening and fluid 616 

on the OCT - detected correctly by the DLS. C) HE within 1500 μm, thickening and fluid on the 617 

OCT - missed by the DLS. D) No HE within 1500 μm, no thickening or fluid on the OCT - false 618 

positive reported by the DLS. 619 
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Characteristic Australia India Thailand United 

Kingdom 

Institution Derbarl Yerrigan 

Health Service, 

Perth 

Sankara 

Nethralaya, 

Chennai 

Rajavithi Hospital, 

Bangkok 

Moorfields Eye 

Hospital, London 

Collection dates July 2013 to 

October 2020 

October 2019 to 

February 2020 

February 2020 to 

July 2020 

August 2014 to 

September 2018 

Population Diabetic patients 

presenting for DR 

screening 

Diabetic patients 

visiting outpatient 

ophthalmology clinic 

Diabetic patients 

presenting for DR 

screening 

Diabetic patients 

randomly selected 

from a cohort 

referred from the 

DR screening 

program for at least 

one eye with mild 

DR and 

maculopathy 

Patients 866 168 548 537 

Age in years, mean (SD) 54.9 (15.0) 

n=866 

60.0 (8.6) 

n=168 

57.6 (11.2) 

n=548 

55.0 (15.1) 

n=537 

Sex (% female) 52.4% 

n=454 

31.5% 

n=53 

62.2% 

n=341 

41.7% 

n=224 

Eyes (one image per eye) 1692 298 1070 698 

Eyes used in analysis after 

excluding ungradable images, % 

90.4% 

n=1530 

98.0% 

n=292 

98.5% 

n=1054 

100.0% 

n=698 

No DR, % 75.6% 

n=1157 

44.2% 

n=129 

87.0% 

n=917 

0.0% 

n=0 

Mild DR, % 3.2% 

n=49 

3.4% 

n=10 

4.0% 

n=42 

100.0% 

n=698 

Moderate DR, % 16.5% 

n=253 

27.7% 

n=81 

6.9% 

n=73 

0.0% 

n=0 

Severe DR, % 1.0% 

n=15 

3.1% 

n=9 

1.3% 

n=14 

0.0% 

n=0 

Proliferative DR, % 3.7% 

n=56 

21.6% 

n=63 

0.8% 

n=8 

0.0% 

n=0 

Central subfield thickness in μm, 

mean (SD) 

238.6 (54.5) 

n=1530 

297.5 (118.8) 

n=291 

270.9 (56.0) 

n=1054 

233.0 (42.5) 

n=698 

ci-DME positive (central subfield 

thickness ≥ threshold), % 

3.8% 

n=58 

21.0% 

n=61 

2.5% 

n=26 

5.3% 

n=37 

ci-DME positive (IRF present), 

% 

11.1% 

n=166 

25.0% 

n=72 

Not available 23.8% 

n=162 

ci-DME positive (central retinal 

thickening and IRF present), % 

3.1% 

n=46 

18.4% 

n=53 

Not available 4.8% 

n=33 

DME positive (retinal thickening 

≥ threshold) 

13.1% 

n=200 

39.0% 

n=114 

4.6% 

n=49 

Not available 
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Table 1. Baseline characteristics of the validation datasets from multiple institutions in Australia, India, 

Thailand, and the United Kingdom. Abbreviations: ci-DME: center-involving diabetic macular edema; 

DR: diabetic retinopathy; SD: standard deviation; IRF: intraretinal fluid. 
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Dataset Imaging device(s) 

used 

Ground truth for 

primary analysis 

(ci-DME based 

on CST) 

Ground truth for secondary 

analysis 

Expert DR & DME 

grades from CFP 

Australia CFP + OCT: 3D OCT-

1 Maestro (Topcon 

Corp., Tokyo, Japan) 

Topcon 

software 

1. Thickness-based ci-DME and nci-

DME from Topcon software 

2. Majority grade by 3 

ophthalmologists for IRF-based ci-

DME and DME using the full OCT 

volume 

Single grades by a pool 

of 7 retina specialists 

India CFP: NFC 700 

(Crystalvue, Taoyuan 

City, Taiwan) or 

NW400 (Topcon 

Corp., Tokyo, Japan) 

OCT: Cirrus HD-OCT 

500 (Carl Zeiss 

Meditec, Dublin, CA) 

Zeiss 

software 

1. Thickness-based ci-DME and nci-

DME from Zeiss software 

2. Adjudicated grade by 1 retina 

specialist and 1 ophthalmologist for 

IRF-based ci-DME using the OCT 

report, with the central B-Scan 

containing the fovea 

3-way adjudicated 

grades by a pool of 18 

experts (13 retina 

specialists, 2 

ophthalmologists, 3 

optometrists) 

Thailand CFP: VX-10 (Kowa, 

Tokyo, Japan) 

OCT: Spectralis 

(Heidelberg 

Engineering, 

Heidelberg, Germany) 

Heidelberg 

software 

1. Thickness-based ci-DME and nci-

DME from Heidelberg software 

2. IRF grades not available 

Single grades by a pool 

of 5 retina specialists 

UK CFP + OCT: 3D OCT-

2000 (Topcon Corp., 

Tokyo, Japan) 

Topcon 

software 

1. Thickness-based ci-DME from 

Topcon software after manual 

recentering of ETDRS grid to fovea 

(nci-DME measurements not 

available) 

2. Majority grade by 3 

ophthalmologists for IRF-based ci-

DME and DME using the full OCT 

volume 

Screening grade, derived 

by a 3-level grading 

system26 using certified 

retinal graders in the 

diabetic eye screening 

program 

Table 2. Sources of ground truths and expert grades for comparison in the validation datasets. CFP: 

color fundus photograph; ci-DME: center-involving diabetic macular edema; CST: central subfield 

thickness; DR: diabetic retinopathy; DME: diabetic macular edema; ETDRS, Early Treatment Diabetic 

Retinopathy Study; IRF, Intraretinal Fluid; OCT: optical coherence tomography.  
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Combined Australia India Thailand 

Number of images 673 373 163 137 

Number of patients  457 247 106 104 

Number of images positive for ci-

DME 

145 58 61 26 

Model specificity 80% 86% 77% 66% 

Grader specificity 59% 57% 44% 78% 

95% CI for difference [5%, 36%] [3%, 54%] [22%, 43%] [-32%, 7%] 

p-value for difference 0.008 0.030 <0.001 0.201 

Model sensitivity 81% 71% 84% 100% 

Grader sensitivity 70% 66% 72% 77% 

p-value for non-inferiority <0.001 0.007 0.002 0.013 

95% CI for difference [2%, 20%] [-7%, 17%] [-4%, 26%] [-6%, 52%] 

p-value for difference 0.014 0.402 0.127 0.121 

 

Table 3. DLS sensitivity and specificity compared to expert grades for detecting ci-DME in eyes with 

at least mild DR. The experts graded for the presence of hard exudates within 1500 μm. ci-DME was 

defined by central subfield thickness exceeding OCT device specific threshold. Abbreviations: ci-

DME, center-involving Diabetic Macular Edema; CI, Confidence Interval 
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Precis 

A deep learning system was trained to predict OCT-derived diabetic macular edema 

grades from color fundus photographs, and evaluated on international datasets. It 

achieved a superior specificity and comparable sensitivity to experts grading 

photographs. 
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