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Real-world evaluation of RetCAD deep-learning system for the detection of 
referable diabetic retinopathy and age-related macular degeneration
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aLions Outback Vision, Lions Eye Institute, Nedlands, Western Australia, Australia; bCentre for Ophthalmology and Visual Science, University of 
Western Australia, Crawley, Western Australia, Australia; cVitreoretinal Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia

ABSTRACT

Clinical Relevance: The challenges of establishing retinal screening programs in rural settings may 
be mitigated by the emergence of deep-learning systems for early disease detection.
Background: Deep-learning systems have demonstrated promising results in retinal disease detec-
tion and may be particularly useful in rural settings where accessibility remains a barrier to equitable 
service provision. This study aims to evaluate the real-world performance of Thirona RetCAD for the 
detection of referable diabetic retinopathy and age-related macular degeneration in a rural Australian 
population.
Methods: Colour fundus images from participants with known diabetic retinopathy or age-related 
macular degeneration were randomly selected from ophthalmology clinics in four rural Australian 
centres. Grading was con(rmed retrospectively by two retinal specialists. RetCAD produced 
a quantitative measure (0–100) for DR and AMD severity. The area under the ROC curve (AUC) was 
calculated. Sensitivity, speci(city, and positive and negative predictive values were calculated at 
a pre-de(ned cut-point of ≥50.
Results: A total of 150 images from 82 participants were included. The mean age (SD) was 64.0 (12.8) 
years. Seventy-nine (52.7%) eyes had evidence of referable DR, while 54 (36.0%) had evidence of 
referable AMD. The AUC for referable DR detection was 0.971 (95% CI 0.950–0.936) with a sensitivity 
of 86.1% (76.8%–92.0%) and a speci(city of 91.6% (82.8%−96.1%) at the pre-de(ned cut-point. Using 
the Youden Index method, the optimal cut-point was 41.2 (sensitivity 93.7%, speci(city 90.1%). The 
AUC for the detection of referable AMD was 0.880 (0.824–0.936). At the pre-de(ned cut-point 
sensitivity was 88.9% (77.8%–94.8%) and speci(city was 66.7% (56.8%–75.3%). The optimal cut- 
point was 52.6 (sensitivity 87.0%, speci(city 75.0%).
Conclusion: RetCAD is comparable with but does not outperform equivalent deep-learning systems 
for retinal disease detection. RetCAD may be suitable as an automated screening tool in a rural 
Australian setting.
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Introduction

Diabetic retinopathy (DR) is a signi(cant and growing public 

health concern, recognised as a leading cause of blindness 

amongst working-age adults worldwide.1 The prevalence of 

DR amongst those living with diabetes is currently estimated 

to be 23.7% in non-Indigenous Australians and 30.2% in 

Indigenous Australians.2 The growing burden of retinal dis-

ease is far from limited to the e?ects of DR, however. Age- 

related macular degeneration (AMD) is a leading cause of 

irreversible blindness in elderly populations and has 

a weighted prevalence of 14.8% and 13.8% amongst non- 

Indigenous and Indigenous Australians with visual impair-

ment, respectively.3

The value of early detection and treatment of retinal dis-

ease through the use of screening programs, at an individual 

and population level, is well established.4 However, with the 

projected increases in retinal disease prevalence, particularly 

in rural and remote areas that are typically underserviced, the 

provision of adequate screening models represents 

a growing challenge in health care.

Rapid advances and uptake of automated retinal imaging 

analysis through the use of arti(cial intelligence algorithms 

have mounting potential to overcome the challenges faced in 

rural population screening.5–7 Deep-learning systems, 

a branch of arti(cial intelligence well suited to image analysis 

due to their ability to recognise abnormalities with increasing 

accuracy, have become a focus for the progression of medical 

arti(cial intelligence applications.8 Existing deep-learning sys-

tem validation studies have demonstrated better perfor-

mance and potential for reduced screening costs and 

improved workAow compared to traditional retinal screening 

processes.9–11

Unfortunately, generalisability is a known limitation of 

deep-learning systems. A growing body of evidence suggests 

that systems trained on non-diverse and non-representative 

data may contribute to biased algorithms and creates the risk 

of inaccurate performance and misdiagnosis in certain popu-

lation subgroups.12,13 A recent systematic review by Arora 

et al.14 speci(cally highlights geographical location as an 

attribute being at the particular risk of harm from under-

representation in training datasets.14 Therefore, rigorous vali-

dation in intended settings and subpopulations is paramount 

prior to widespread implementation.5,14

Within this paper, the term ‘real-world’ is utilised to imply 

validation using routinely collected health data used for med-

ical assessment and diagnosis, within a speci(c population 

sub-group, in which a retinal disease deep-learning system 

might be employed for screening purposes.15 There are 
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apparently only two validation studies that have analysed the 

performance of retinal disease deep-learning systems in 

a real-world Western Australian population.7,16

Thirona RetCAD (Thirona, Nijmegen, The Netherlands) is 

a commercially available Therapeutic Goods Administration 

(TGA) approved medical device software that incorporates 

a deep learning framework for the detection of DR, AMD 

and glaucoma from colour fundus images.17 The software 

receives the fundus image as input and produces several 

outputs including an image quality assessment, heatmaps 

of areas of abnormality and a score for the severity of the 

ocular diseases. There has been no formal analysis of the 

Thirona RetCAD deep-learning system in a rural Australian 

population.

The purpose of this study is to apply RetCAD to a high-risk 

rural population with either DR or AMD using real-world data 

to analyse its performance in referable DR and AMD detection 

and consider its potential for implementation as part of an 

automated retinal screening program. Furthermore, the study 

aims to apply evidence-based threshold selection methods to 

the data to propose disease-speci(c optimal cut-points for 

referral.

Materials and methods

Ethics approval was obtained from the University of Western 

Australia Human Ethics Committee in accordance with the 

requirements of the National Statement on Ethical Conduct in 

Human Research.

Single-(eld colour fundus 45-degree photographs were 

captured from consecutive patients attending rural ophthal-

mology clinics between January 2020 and June 2022. Routine 

retinal imaging was performed by medical practitioners 

trained in the use of Topcon Maestro Optical Coherence 

Tomography devices. The locations of the rural clinics were 

Port Hedland, Karratha, Kalgoorlie and Albany in Western 

Australia. Based on the real-world nature of the clinics, the 

pupils of participants were only dilated as necessary.

Images from patients with a pre-existing diagnosis of DR 

(any) or AMD (any) or both were deidenti(ed and placed into 

the study dataset. Images were excluded if DR or AMD were 

unclassi(able due to poor image quality or media opacity. 

The RetCAD software (v1.3.1) was functionally integrated into 

the imaging database routinely used for the rural clinics for 

the purpose of the study. The deep-learning system was run 

on included images, and the reported outcomes were docu-

mented. The RetCAD severity score is reported as a value 

between 0.00 and 100.00. The algorithm is designed such 

that those with a score ≥ 50.00 should be referred for further 

testing, though there is limited evidence regarding the ratio-

nale for this cut-o? point.

Each colour fundus photograph was individually graded 

by two retinal specialists (DS and VS) for the presence of 

referable DR, referable AMD, or both. Discrepancies were 

analysed by a third ophthalmologist (AT) for arbitration. 

Referable DR was de(ned as the presence of moderate non- 

proliferative DR or worse based on the International Clinical 

Diabetic Retinopathy (ICDR) severity scale,18 meaning evi-

dence of DR with more than just microaneurysms (i.e. any 

intraretinal haemorrhages, venous beading, prominent intrar-

etinal microvascular abnormalities, or signs of proliferative 

DR). Referable AMD was de(ned as intermediate AMD or 

worse as per Beckman classi(cation in Table 1 (i.e. presence 

of large drusen (>125 µm) and/or AMD pigmentary 

abnormalities).19 These de(nitions were chosen for consis-

tency with existing Thirona RetCAD validation papers and 

reAect routine clinical practice in Australia, which allows for 

e?ective deep-learning system performance comparison in 

this real-world rural Australian population.17,20–22

Data are presented as mean (SD) or number (%). Area 

under the receiver operating characteristics curve (AUC) 

were calculated. Sensitivity, speci(city, positive predictive 

value, negative predictive value and diagnostic accuracy for 

referable disease were calculated at the pre-de(ned cut-point 

of ≥50. A recommended threshold value for each disease was 

identi(ed using the Youden Index method, where the opti-

mal cut-point is the point maximising the Youden function, 

the di?erence between true positive rate and false positive 

rate over all possible cut-point values. This method was cho-

sen for its widespread use for threshold selection in medical 

and biological sciences.23 An additional cut-point was identi-

(ed at the point where sensitivity and speci(city were 

approximately equal.24

Results

The demographic information of study participants is sum-

marised in Table 2. One hundred and (fty eyes, from 82 

people, were randomly selected for analysis. Forty-two 

(51%) of participants were female. Participant age was nor-

mally distributed with a mean (SD) age of 64.0 (12.8) years. 

Following grading by the two retinal specialists, 36 images 

required arbitration by the third grader. Seventy-nine eyes 

(52.7%) were graded as having evidence of referable DR, 

Table 1. Summary of non-referable and referable disease characteristics for DR and AMD, as per ICDR and Beckman classification, respectively.

Observable findings Non-referable/referable

DR classification

No retinopathy No abnormalities Non-referable

Mild non-proliferative DR Microaneurysms only

Moderate non-proliferative DR More than just microaneurysms but less than severe NPDR Referable

Severe non-proliferative DR Any of the following:
– >20 intraretinal haemorrhages in each of 4 quadrants
– Venous beading in ≥2 quadrants
– Prominent IRMA in ≥1 quadrant

Proliferative DR Neovascularisation and/or vitreous or pre-retinal haemorrhage

AMD classification

Normal ageing changes Small drusen <63 µm and no AMD pigmentary abnormalities Non-referable

Early AMD Medium drusen >63 µm and ≤125 µm and no AMD pigmentary abnormalities

Intermediate AMD Large drusen >125 µm and/or AMD pigmentary abnormalities Referable

Late AMD Neovascular AMD and/or geographic atrophy

DR = Diabetic retinopathy; AMD = age-related macular degeneration; IRMA = intraretinal microvascular abnormalities.
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while 54 eyes (36.0%) had referable AMD. Seventeen eyes 

were graded as having neither referable DR nor referable 

AMD. The mean (SD) quality score for the images was 51.7 

(28.8) with a range of 0.2–99.7.

Detailed analysis results of referable DR and AMD detection 

at various cut-points are reported in Tables 3 and 4. The AUC 

for referable DR detection was 0.971 (95% CI 0.950–0.936, 

p < 0.001) (Figure 1). At the pre-de(ned cut-point of ≥50, 

RetCAD detected referable DR with a sensitivity of 86.1% 

(76.8%−92.0%), a speci(city of 91.6% (82.8%−96.1%) and 

a diagnostic accuracy of 88.7% (82.6%−92.8%). The optimal 

cut-point through Youden index analysis was ≥41.2, producing 

a sensitivity of 93.7% (86.0%−97.3%) and a speci(city of 90.1% 

(81.0%−95.1%). The diagnostic accuracy was 92.0% 

(84.2%−95.4%).

The AUC for referable AMD detection was 0.880 (0.824–0.936, 

p < 0.001) (Figure 2). At the pre-de(ned cut-point of ≥50, refer-

able AMD detection sensitivity was 88.9% (77.8%−94.8%) and 

speci(city was 66.7% (56.8%−75.3%). Diagnostic accuracy was 

74.7% (67.2%−81.0%). Applying the Youden index, yielded an 

optimal cut-point of ≥52.6. At this point, referable disease detec-

tion sensitivity was 87.0% (75.6%−93.6%) and speci(city 75.0% 

(65.5%−82.6%), with a diagnostic accuracy of 79.3% 

(72.2%−85.0%).

Discussion

Using retinal images acquired in real-world rural eye clinics 

in Western Australia, the RetCAD software was able to iden-

tify those with referable DR with a reasonable level of 

Table 2. Baseline characteristics of study participants.

Characteristic

Male/Female, n 40/42

Age, years, mean (SD) 64.0 (12.8)

Moderate DR or worse, n (%) 79 (52.7)

Intermediate AMD or worse, n (%) 54 (36.0)

Neither moderate DR or worse nor intermediate  
AMD or worse, n (%)

17 (11.3)

DR = Diabetic retinopathy; AMD = age-related macular degeneration. 
Included images/eyes = 150.

Table 3. Thirona RetCAD performance for referable DR detection at various cut-points.

Cut-point for referable DR 41.2† 44.7‡ 50§

Sensitivity (%) 93.7 (86.0-97.3) 89.9 (81.3-94.8) 86.1 (76.8-92.0)

Specificity (%) 90.1 (81.0-95.1) 90.1 (81.0-95.1) 91.6 (82.8-96.1)

PPV (%) 91.4 (83.2-95.8) 91.0 (82.6-95.6) 91.9 (83.4-96.2)

NPV (%) 92.8 (84.1-96.9) 88.9 (79.6-94.3) 85.5 (75.9-91.7)

Diagnostic accuracy (%) 92.0 (86.5-95.4) 90.0 (84.2-93.9) 88.7 (82.6-92.8)

DR = Diabetic retinopathy; PPV = positive predictive value, NPV = negative predictive value. 
†Youden index cut-point. 
‡Sensitivity = specificity cut-point. 
§Pre-defined cut-point.

Table 4. Thirona RetCAD performance for referable AMD detection at various cut-points.

Cut-point for referable AMD 50† 52.6‡ 56.7§

Sensitivity (%) 88.9 (77.8-94.8) 87.0 (75.6-93.6) 79.6 (67.1-88.2)

Specificity (%) 66.7 (56.8-75.3) 75.0 (65.5-82.6) 80.2 (71.1-87.0)

PPV (%) 60.0 (49.1-70.0) 66.2 (54.6-76.1) 69.4 (57.0-79.4)

NPV (%) 91.4 (82.5-96.0) 91.1 (82.8-95.6) 87.5 (79.0-92.9)

Diagnostic accuracy (%) 74.7 (67.2-81.0) 79.3 (72.2-85.0) 80.0 (72.9-85.6)

AMD = Age-related macular degeneration; PPV = positive predictive value, NPV = negative predictive value. 
‡Youden index cut-point. 
§Sensitivity = specificity cut-point. 
†Pre-defined cut-point.

Figure 1. Area under the ROC curve (AUC) for referable DR detection.

Figure 2. Area under the ROC curve (AUC) for referable AMD detection.
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accuracy; however, the deep-learning system did not work 

as well for referable AMD. In recent years, multiple arti(cial 

intelligence systems for retinal disease detection have 

become available, including the approval of several systems 

by the Therapeutic Goods Administration. Validation of 

these systems for DR detection has estimated a sensitivity 

range between 87% and 98% and a speci(city range 

between 86% and 97%.6

Similarly, AMD detection estimates for sensitivity are 

between 90% and 100% and speci(city between 70% and 

93%.6 The results of this study indicate that RetCAD performs 

comparably with most other TGA-approved deep-learning 

systems for retinal disease detection in a real-world popula-

tion, at the identi(ed Youden Index cut-point.

The RetCAD software has been validated in several studies, 

predominately on publicly available fundus image 

datasets.17,20–22 González-Gonzalo et al.20 applied RetCAD 

(v.1.3.0) to Messidor, a publicly available dataset of 1,200 

colour fundus images. Two-thirds of these images were 

taken on dilated pupils. The detection of referable DR yielded 

an AUC of 0.975 with a sensitivity of 92.0% and a speci(city of 

92.1%. A second image dataset, AREDS (133,821 images), was 

used to assess referable AMD detection, yielding an AUC of 

0.927 with a sensitivity of 85.8% and a speci(city of 86.0%. 

A joint detection analysis was also performed on a combined 

DR-AMD dataset.

Sánchez-Gutiérrez et al.17 assessed the performance of 

RetCAD (v.1.3.1) for DR detection, applied to a dataset of 

7,195 non-mydriatic fundus images against a reference stan-

dard set by a human expert. The study used a cut-point 

of ≥50 to indicate referable DR. The analysis yielded an AUC 

of 0.988, a sensitivity of 90.5% and a speci(city of 97.1%. The 

study predicted a workload reduction of 96% at a cost of six 

false negatives. Skevas et al.21 ran a prospective study apply-

ing RetCAD (v.1.3.1) to 1,245 fundus photos captured on 

patients attending an ophthalmology day clinic. Images 

were graded in parallel by an expert reference examiner. All 

images were taken without pupil dilation; however, only 

images with clear media allowing sharp fundus photography 

were included. Again, the evaluation used a cut-point of ≥50 

to indicate referable DR or AMD. The study demonstrated an 

AUC of 0.961 and 0.964 for DR and AMD detection, respec-

tively. Sensitivity and speci(city values were 83.9/93.3% for 

DR and 98.2/79.1% for AMD.

The most recent evaluation by Meredith et al.22 applied 

RetCAD (v. 2.1.0) to a dataset of 9,817 fundus images cap-

tured from consenting patients attending routine Diabetic 

Eye Screening Programme (DESP) appointments in London, 

UK. At the pre-de(ned cut-point for referable DR detection, 

the sensitivity was 95.4% and speci(city 92.0%. The AUC was 

0.979. Given the use of an updated version of RetCAD, 

utilising di?erent referable disease cut-points, this study has 

been excluded from the comparisons here.

A summary of results compared to the existing validation 

studies at the pre-de(ned cut-point of 50 is outlined in 

Table 5. Compared to existing studies, the results obtained 

in this study indicate a comparable detection capability of 

referable DR in a real-world rural population.17,20–22 However, 

Sánchez-Gutiérrez et al.17 reported a higher speci(city (91.6% 

vs. 97.1%).

For referable AMD detection, compared to Skevas et al.,21 

the present study produced signi(cantly lower sensitivity and 

speci(city values at the pre-de(ned cut-point (88.9% vs. 

98.2%, 66.7% vs. 79.1%). Reasons for this discrepancy may 

include a smaller sample size in the present study. In compar-

ison with the AREDS arm of González-Gonzalo et al.,20 only 

speci(city was lower to a statistically signi(cant degree 

(66.7% vs. 86.0%).

The signi(cant range of quality score (0.2–99.7) of the 

images, despite the removal of poor-quality images for the 

purpose of gradability, indicates the automated image quality 

metric may not correspond with true gradability. It is diScult 

to predict the image features that the algorithm de(nes as 

low quality, and whether these features can be e?ectively 

navigated by human graders in a screening and referral set-

ting. Further analysis of diagnostic performance adjusted for 

image quality score is warranted.

According to the Australian Department of Health 

Population Based Screening Framework,25 adapted from the 

original screening principles framework of the World Health 

Organisation, there are several key criteria in which 

a proposed screening test is required to meet before imple-

mentation at the population level. These include a test that is 

both sensitive and speci(c, has relatively high positive and 

negative predictive values, is validated and safe, and is accep-

table to the target population.25

One focus of RetCAD as a proposed screening tool in this 

study is the trade-o? between sensitivity and speci(city. It is 

important to consider the real-world consequences of 

accepted sensitivity and speci(city values in screening test 

implementation. The rami(cations of over-referral include 

excess healthcare costs, increased specialist wait periods 

and even the potential for public mistrust in the retinal 

screening and other national screening programs. 

Prioritisation of higher speci(city in screening program imple-

mentation ensures the minimisation of false positives and 

therefore less unnecessary specialist referrals. Alternatively, 

emphasis on higher sensitivity ensures lower rates of false 

negatives and therefore fewer patients being missed who 

require specialist assessment.

An ideal screening tool maximises sensitivity and speci(-

city to as close to maximum (100%) as possible; however, due 

Table 5. Comparison to existing RetCAD validation studies at pre-defined cut-point of ≥50.

This study González-Gonzalo et al.20 Sánchez-Gutiérrez et al.17 Skevas et al.21

DR n 150 1,200 7,195 1,245

AUC 0.971 0.975 0.988 0.961

Sensitivity (%) 86.1 (76.8–92.0) 92.0 (89.3–97.2) 90.5† 83.9†

Specificity (%) 91.6 (82.8–96.1) 92.1 (88.6–95.2) 97.1† 93.3†

AMD n 150 133,821 1,245

AUC 0.880 0.927 0.964

Sensitivity (%) 88.9 (77.8–94.8) 85.8 (84.6–86.2) 98.2†

Specificity (%) 66.7 (56.8–75.3) 86.0 (85.7–87.4) 79.1†

DR = diabetic retinopathy; AMD = age-related macular degeneration; AUC = Area under receiver operating characteristic curve. 
†Confidence intervals not reported.
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to the diScult nature of perfect diagnostic accuracy, a trade- 

o? in sensitivity vs. speci(city may be required in screening 

program design. One of the bene(ts of the RetCAD deep- 

learning system for retinal disease screening is that the cut- 

point value for referable disease can be manipulated based 

on the needs of the program. For both retinal disease groups, 

the sensitivity is higher than the speci(city at the Youden 

index cut-point, although the di?erence is not signi(cant in 

both cases. Implementing the Youden index cut-points into 

a screening program would therefore emphasise lower false 

negative results to ensure capture and referral for more 

patients with referable disease, at the expense of higher 

rates of unnecessary referrals.

The authors suggest an implemented screening program 

cut-o? score of 45 for referable DR and 55 for referable 

AMD. There are two reasons for which these values have 

been suggested. First, for ease of consistency across screen-

ing centres, simple rounded values promote easier recall 

and minimise resistance to protocol adherence.26 Second, 

in both retinal disease groups these values narrow the 

di?erence between sensitivity and speci(city by reducing 

the former and increasing the latter. This is deemed an 

acceptable trade-o? because the primary aim is to detect 

the disease in its moderate/intermediate state, prior to 

approaching vision-threatening severity. It is anticipated 

that in most cases the small excess of false negatives will 

be captured and referred at their next screening appoint-

ment before any signi(cant disease progression has 

occurred. Higher speci(city also reduces the wait times 

and burden on the health system by minimising unneces-

sary specialist referrals.

The strengths of the present study include the use of 

real-world data from a rural Australian setting with the use 

of colour fundus images obtained from consecutive DR/ 

AMD patients attending rural ophthalmology clinics. This 

is apparently the (rst study to analyse RetCAD performance 

at various cut-points and use evidence-based AUC analysis 

to make logical suggestions for optimal referable threshold 

scores.

There are relevant limitations of this study, including 

a relatively small sample size compared to existing valida-

tion studies, and the retrospective nature of the study 

possibly misrepresenting the challenges of prospective 

cohort screening. The inclusion of images from patients 

with pre-existing diseases only may not represent the true 

nature of a screening program within a target population, 

thus creating a biased sample. Furthermore, the study 

population had a higher prevalence of both referable DR 

and referable AMD compared to the general population, 

which could result in a higher sensitivity and lower 

speci(city.27 However, given the purposes of the analysis 

of the ability of RetCAD to detect disease severity warrant-

ing referral, the (ndings of this study are still useful in 

advising screening program suitability.

Further performance analysis is warranted in rural popula-

tions with risk factors for retinal disease, without a pre- 

existing diagnosis. Unfortunately, data on those excluded 

due to poor-quality images was not available. Furthermore, 

the use of de-identi(ed clinic data means that available infor-

mation for sub-group analysis was limited, which may have 

enriched the evaluation.

Further population sub-group analysis is likely to be 

bene(cial given the known limitation in the performance 

of deep-learning systems when applied to populations 

external to their development.5,14 Image quality analysis 

could further guide decision-making by healthcare workers 

in regard to the need for environment manipulation, dila-

tion and future screening intervals at the time of image 

capture.

Conclusion

This study demonstrates that the Thirona RetCAD deep- 

learning system for referable DR detection performs compar-

ably to other validation studies when applied to a real-world 

rural Australian population. However, the deep-learning sys-

tem may be less accurate in this setting for referable AMD 

detection, compared to other studies. Early inter-tool com-

parisons suggest that RetCAD competes with but does not 

outperform other equivalent deep-learning systems for ret-

inal disease detection. Further prospective analysis is required 

on population sub-groups and calibration for image quality.
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